Online Kernel Matrix Factorization
نویسندگان
چکیده
The problem of efficiently applying a kernel-induced feature space factorization to a largescale data sets is addressed in this thesis. Kernel matrix factorization methods have showed good performances solving machine learning and data analysis problems. However, the present growth of the amount of information available implies the problems can not be solved with conventional methods, due their high time and memory requirements. To solve this problem, a new kernel matrix factorization method is proposed called online kernel matrix factorization (OKMF). This method overcomes the time and memory limitations with two strategies. The first is imposing a budget restriction, i.e., restricting the number of samples needed to represent the feature space base. The second is using stochastic gradient descent to compute the factorization, allowing OKMF to scale linearly in time to large-scale data sets. Experimental results show OKMF is competitive with other kernel methods and is capable to scale to a large-scale data sets.
منابع مشابه
Online kernel nonnegative matrix factorization
Nonnegative matrix factorization (NMF) has become a prominent signal processing and data analysis technique. To address streaming data, online methods for NMF have been introduced recently, mainly restricted to the linear model. In this paper, we propose a framework for online nonlinear NMF, where the factorization is conducted in a kernel-induced feature space. By exploring recent advances in ...
متن کاملSVM classification of hyperspectral images based on wavelet kernel non-negative matrix factorization
This paper presents a new kernel framework for hyperspectral images classification. In this paper, a new feature extraction algorithm based on wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method can improve the nonlinear mapping capability of kernel non-negative matrix fac...
متن کاملPareto front of bi-objective kernel-based nonnegative matrix factorization
The nonnegative matrix factorization (NMF) is a powerful data analysis and dimensionality reduction technique. So far, the NMF has been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. This paper presents a novel bi-objective NMF model based on kernel machines, where the decomposition is performed simultaneously in both input and feature spaces. ...
متن کاملKernelized Matrix Factorization for Collaborative Filtering
Matrix factorization (MF) methods have shown great promise in collaborative filtering (CF). Conventional MF methods usually assume that the correlated data is distributed on a linear hyperplane, which is not always the case. Kernel methods are used widely in SVMs to classify linearly non-separable data, as well as in PCA to discover the non-linear embeddings of data. In this paper, we present a...
متن کاملAn Efficient Nonnegative Matrix Factorization Approach in Flexible Kernel Space
In this paper, we propose a general formulation for kernel nonnegative matrix factorization with flexible kernels. Specifically, we propose the Gaussian nonnegative matrix factorization (GNMF) algorithm by using the Gaussian kernel in the framework. Different from a recently developed polynomial NMF (PNMF), GNMF finds basis vectors in the kernel-induced feature space and the computational cost ...
متن کامل